

LA-UR-21-29078

Approved for public release; distribution is unlimited.

Title: Recent Advancements in Tools and Techniques for Materials

Characterization in the EML

Author(s): Schneider, Matthew M.

Intended for: Talk for internal audience (possible external participants present).

Issued: 2021-09-15

Recent Advancements in Tools and Techniques for Materials Characterization in the EML

Matt Schneider, MST-8

July 27th, 2021

Outline

1. TEM: 4D-STEM

- High-spatial resolution
- Complicated & rich diffraction dataset

2. TEM: STEM-XEDS

· Rapid, highspatial resolution chemical species mapping

3. PFIB: µ-machining

- Large-scale, in situ micromechanical testing
- Prep for beamline experiments

4. PFIB: 3D Datasets

• Imaging,

chemical species mapping, and crystallography in 3D

5. SEM: **TKD**

 High-spatial resolution crystallography without TEM

6. SEM: **HR-EBSD**

 High-angular resolution crystallographic data

1. TEM: 4D-STEM

- Scanned electron probe
- Optics dictates a need to balance real- vs. reciprocal-space resolutions
- Real- & reciprocal-spaces, collected simultaneously → four dimensions
- Comparison of detection between 4D-STEM and traditional dark-field imaging
- Data sets are large (10's to 100's of GBs)

Gadolinium Titanate

Composition: Gd₂Ti₂O₇

- Single crystal
- Pyrochlore structure
- 190 keV helium ions
- Nominal fluence of 10¹⁷ ions/ cm²
- Sample amorphized to a depth of ~1 µm
- He bubbles also present

in situ Annealing

4D-STEM experiment

1. 4D-STEM: Data Analysis – Classification and Segmentation

Classification applied to the GTO sample:

Los Alamos

General classification is performed by disc registration and Bragg peak position classification. Implementation of full orientation mapping is underway.

9/2/21

Ref: B. Savitzky et al., Microscopy and Microanalysis (2021).

In situ tensile holder allows uniaxial tension to be applied to a TEM sample

- Prior characterization via electron back scatter diffraction (EBSD) allows specified tensile directions to be selected
- FIB sample prep ensures targeted orientation(s) are in the electron transparent region
- Hoping/expecting to observe twin formation in one or both grains
 - Primary goal was to capture the strain-field surrounding the twin tip before it interacts with a boundary

1. 4D-STEM: Data Analysis – Strain Mapping

- Cross-, phase-, or hybrid-correlation used to measure shifts in Bragg peaks to sub-pixel precision; patterned probes used to increase precision of Bragg peak localization
- Strain maps computed by comparing location of Bragg peaks at each real-space pixel to reference pattern

 \mathcal{E}_{xx}

 \mathcal{E}_{yy}

 $\mathcal{E}_{\mathbf{x}}$

Rot 9/2/2 $^{\circ}$

1. 4D-STEM: Data Cube Analysis – Virtual Detectors

- Fe–Al–Ni–Cr alloy
 - Matrix: BCC
 - Precipitates:
 - Coherent B2 NiAl
 - Coherent Fe₂₃Zr₆
- Work in real-space and extract reciprocal space data or vice/versa
- Virtual apertures are infinitely configurable
 - Arbitrary shaped virtual detectors possible
 - Extracted real-space images update in real-time

 Rapid identification of several types of precipitates

Navigate in reciprocal-space: Extract bright/dark-field images

 Readily generate statistics on various phase volume fractions

1. 4D-STEM: Many Other Applications in Development

STEM DPC

- Differential phase contrast measures deviations in position of center of mass of un-diffracted disc.
- Reconstruct sample's electrostatic or magnetic fields based on the displacement vector at each location in real-space

Electron Ptychography

- Coherent diffraction imaging method enables super-resolution
- Demonstrated resolution of ~0.2 Å, resolution limited by vibration of atoms, not by optics
- Limited to samples <30 nm thick

Z. Chen, Science 372, 826 (2021).

Multi-beam ACOM

- Specially constructed condenser aperture used to generate a circular array of electron beams
- Optics setup to focus all beams to single point on the sample
- Off-axis beams are able to access required HOLZ information

X. Hong, Microscopy & Microanalysis 27, 129 (2020).

1. 4D-STEM: Technique's Current Status at the EML

- Status: Ready for use
 - Hardware fully integrated with the Titan S/TEM
 - Several users already trained and collecting datasets each week
- Challenges: Significant, but mostly manageable
 - Datasets can be 10's 100's of GBs
 - Processing requires efficiently coded software running on computers with significant computational and memory resources
 - Code for very limited types of analyses available at the moment
- Prospects for future development: Excellent
 - Datasets contain far more information than current analysis codes are able to efficiently extract
 - Dynamical diffraction datasets require complex considerations, but contain a massive wealth of information
 - Multi-beam ACOM collaboration with NCEM just getting going, hope to have betaimplementation operational within 1 calendar year

2. TEM: STEM-XEDS

- Scanned transmission electron probe
- 300 kV primary electrons interact with sample to produce x-rays with a spectrum of wavelengths/energies
- X-ray energy-dispersive spectroscopy (XEDS) analyzes the energies of these x-rays and correlates them back to electronic structures characteristic of each element

2. XEDS: New Silicon-Drift Detector on Titan

- XEDS detector upgraded from 30 mm² to 70 mm² active-area sensor
- Collection angle has gone from <0.1 sr to >0.45 sr collection angle
- >200 kcps throughput
 - High-quality mapping now possible in short time-frames (5-20 minutes)
- Spatial resolution limits in TEM determined by optics (not beam broadening)
 - Titan limited to 1.36Å at the extreme, in practice 1 nm is easy.

- Approximately equiatomic Fe-Mn-Cr-Ni HEA
- Phase segregated due to 400 DPA irradiation

HEA sample courtesy of J. Gigax

2. XEDS: Technique's Current Status at the EML

- Status: Ready for use
 - Hardware fully integrated with the Titan S/TEM
- Challenges: Minor
 - Certain combinations of elements have spectral overlaps that can be challenging to resolve, an inherent limitation of XEDS
 - Highly accurate quantification requires use of known standards for proper calibration
 - Very high-quality, large-area maps require long mapping times
 - Unfortunately the <u>room's temperature stability</u> is currently the <u>limiting factor</u>
- Prospects for future development: Mature technology, usability improvements expected in software
 - Possibility of implementing Zeta-Factor-based quantification for improved standardless quantification
 - Ideally, EML would have database of standards available for common compounds to improve quantification results for user-base

3. Micromachining

- Positively charged ions are focused with electro-magnetic lenses and steered across the sample surface
- Ions locally sputter wherever they impinge
 - Low beam currents used for imaging
 - High beam currents used for directed material removal
- Traditional FIB: Ga⁺ ions, beam current maxes out around 65 nA
- Plasma FIB: Xe⁺ ions, maximum beam current on EML instrumentation 2.5 μA

3. Micromachining: Rapid prep of large samples for 3D

- PFIB Ion beam currents of up to 2.5 µA greatly accelerate bulk material removal
 - Approximately 40 times faster than Ga⁺ FIB
- In this video: 1 μA beam cleanly cuts bulk Ti
 - Minimal clean-up required
- 100 x 100 x 100 μm³ cube fabricated in <4 hours

Collaborators: R. McCabe

- Readily fabricate/modify test apparatus geometries for each experiment
- W blank cut out using CINT's FemtoScribe capability
- PFIB used for finer, cleaner finishing

- Readily adapt test apparatus geometries to suit each experiment
- Rapid fabrication of mesoscale samples for mechanical testing

- Readily adapt test geometries to customize experiment
- Rapid fabrication of mesoscale samples for mechanical testing
- Conduct testing in situ

- Readily adapt test geometries to customize experiment
- Rapid fabrication of mesoscale samples for mechanical testing
- Conduct testing in situ
 - Integrate analytical (e.g. EBSD) capabilities while testing
 - Entire process is in situ, air-sensitive samples are not a problem

3. Micromachining: Technique's Current Status at the EML

- Status: Almost ready for use
 - PFIB fully installed, most bugs worked out (very slow Xe gas leak being localized)
- Challenges: Minor?
 - In development phase of procedures for EML users, a few challenges have arisen but these are anticipated to be solvable in the near future
 - As always, in situ experiments require careful setup and data collection
- Prospects for future development: Excellent
 - LANL is ahead of the curve (though not leading, yet)
 - There is a large amount of materials science to be done between the Ga⁺ FIB and the bulk sample regimes

4. PFIB: 3D Datasets

- Serial cross sectioning conducted by carefully milling away slices of a controlled thickness followed by the collection of secondary electron images and/or other signals of interest
- Datasets are reconstructed into 3D datacubes that are directly interpretable

4. 3D Datasets: Serial Cross-Sectional Imaging

- Collected on Ga+ FIB over ~24 hours
- Manually segmented over >40 hours (Thanks COVID-19!)

Collaborators: E. Tegtmeier, A. Richards

4. 3D Datasets: Serial Cross-Sectional Imaging

- Collected on Xe+ FIB over ~28 hours
- Machine-learning based segmentation underway

Collaborators: E. Tegtmeier, A. Richards

4. 3D Datasets: Serial Cross-Sectional Imaging

- PFIB investigates > 350x the volume in approximately the same amount of time
 - Manual segmentation does not scale, ML required

4. 3D Datasets: Imaging + XEDS Mapping

- Sample: Stainless steel
 - Accelerated corrosion conducted with exposure to Cl gas
- Collection of XEDS maps, coupled with imaging enables a more complete understanding of spatial relationship between various phases

4. 3D Datasets: 3D-EBSD

- 3D EBSD enables the study of relationships between grains in far greater detail than any single slice through a given material
- Sample: Titanium
 - 100 x 100 x 100 um³
- Data collection details:
 - FIB slice time ~75 seconds
 - EBSD collection ~100 seconds
 - 250 nm cubic voxels (from 250 nm thick slices)
 - Sample prep to 3D EBSD data ~24 hours

Collaborators: R. McCabe

4. 3D Datasets: Technique's Current Status at the EML

- Status: Almost ready for use
 - PFIB fully installed, most bugs worked out (very slow Xe gas leak being localized)
- Challenges: Minor?
 - In development phase of procedures for EML users, a few challenges have arisen but these are anticipated to be solvable in the near future
 - Optimization of data collection procedures underway, small gains per-frame save many hours over the entire process
- Prospects for future development: Excellent
 - LANL is ahead of the curve (though not leading, yet)
 - Three dimensional analyses are far more complete than single-frames
 - These datasets are useful inputs for modelling efforts at various length-scales
 - Prospects for machine-learning/AI based data analyses are quite positive and these techniques are absolutely needed to aid in processing the large volumes of data generated

5. SEM: Transmission Kikuchi Diffraction (TKD)

- Scanned electron probe is transmitted through a thinned sample
- Inelastically scattered electrons are diffracted off of lattice and form Kikuchi patterns in the far-field
- Spatial resolutions of about 5 nm (EBSD resolution ~150 nm)
 - Crystallographic information is from near the exit-surface only, not averaged through the sample's thickness

5. TKD: Experimental Configuration

- Samples required to be transparent at SEM beam energies (10 – 30 kV)
 - Must be >500 nm thick (actual) requirement depends on throughthickness average atomic number)
 - Thinner samples yield higher spatial resolution
- Samples are commonly "back-tilted" 20° to bring more diffraction onto EBSD camera
- Short working distances are used, placing sample above the top of the EBSD camera

5. TKD: Sample Preparation

- Site-specific TKD sample prep:
 - FIB used to pull lamella from selected region of bulk sample
 - Sample mounted on TEM half-grid for TKD characterization in the SEM
 - 2 kV final polish greatly improves quality of TKD patterns
- Non-site-specific TKD sample prep:
 - Dimple-grinding and ion-milling
 - Twin-jet electropolishing
 - Wedge-polishing

5. TKD: Data Post-Processing

- TKD data is harder to process using the traditional EBSD pipeline; local variations in sample thickness can strongly affect the background
 - Post-processing of TKD patterns making use of advanced background models and other image processing techniques yield higher quality orientation data
 - Combining and averaging each pattern with its first-nearest-neighbors yields a 1/sqrt(7) improvement in signal to noise (i.e. EDAX's NPAR)

5. TKD: Post-processed Experimental Results

- Sample: Cu-Nb, 140 nm nominal layer thickness
- IPFs from static background subtraction (left) vs. advanced background processing coupled with nearest-neighbor averaging (right)
 - 38% improvement in the number of points successfully indexed

Collaborators: R. McCabe, Y. Zhang

5. TKD: Technique's Current Status at the EML

- Status: Ready for use
 - Several EML users are already collecting high-quality TKD data
- Challenges: Minor
 - Data processing requires above average computational resources
 - Large datasets are common (10's to 100's of GBs)
- Prospects for future development: Good
 - Reasonably mature new technique, based on tried-and-true EBSD principles
 - Correlative workflows are improving and aiding researchers to efficiently bridge the SEM and TEM length-scales

6. SEM: HR-EBSD

- High-resolution electron backscatter diffraction (HR-EBSD) is a technique for mapping localized lattice distortions and misorientations in crystalline materials
- "High-resolution" refers to the angular resolution to which the crystal structure can be accurately indexed

6. HR-EBSD: Conventional EBSD vs. High Res.

Convention EBSD

- Stage tilted +70°, towards EBSD camera
- Camera setup for high-speed capture: low exposure, high-gain, single frame, binned 4x4
- Data processing is done via Hough transform, able to process on the fly
 - Data reduction accomplished by only saving the location of Hough peaks rather than full pattern

Results:

- Absolute orientation precision: ±2°
- Misorientation precision: ±0.5°

High-Resolution EBSD

- Stage titled +70°, towards EBSD camera
- Camera setup for maximum SNR: low gain, long exposure, frame averaging, un-binned
- Data processing is conducted by crosscorrelating experimentally recorded patterns versus reference patterns
 - Reference patterns from un-strained region or computed from known crystallography

Results:

- Absolute orientation: computed conventionally
- Misorientation precision: ±0.0006°

6. HR-EBSD: Cross-Correlation Processing

- Computed patterns provide ground-truth, experimentally recorded reference patterns are subject to SNR limits as well any residual strain in the sample
- Cross-correlation used to measure shifts in both zone axis location as well as rotational orientation with sub-pixel precision
- The measured shifts are directly, geometrically linked to strains and lattice rotations
- Deviations in interplanar angles and lattice orientations subsequently measured precisely and accurately

Ref: T. Britton et al., IOP Conf.: Mat. Sci. & Eng. 304 (2018).

6. HR-EBSD: Results of Conventional EBSD vs. High Res.

http://www.hrebsd.com/

Ref: A. Wilkinson & D. Randman, Phil. Mag. 90 1159 (2010).

6. HR-EBSD: Technique's Current Status at the EML

- Status: Just getting started
 - Prototype datasets have been collected, these have demonstrated the limitations of current EML hardware
- Challenges: Moderate
 - Data processing requires above average computational resources
 - Large datasets are common (10's to 100's of GBs)
 - EML's current EBSD cameras are not well suited to HR collection needs
- Prospects for future development: Good
 - New EBSD camera well suited to the technique has been ordered
 - The leading commercial HR-EBSD data processing solution, Cross-Court, is already running in the EML and available for users
 - Lack of results, to date, is primarily due to lack of suitable data

Thank You

- And many thanks to collaborators:
 - Rod McCabe
 - Ben Morrow
 - Matt Janish
 - Ben Derby
 - Hi Vo
 - Michael Pettes
 - Alejandra Londoño-Calderon

- Laurent Capolungo
- Terry Holesinger
- Eric Tegtmeier
- Andrew Richards
- Yifan Zhang
- Nan Li
- Many more....

Backup Slides

Shamelessly stolen from Colin Ophus, NCEM